Bausch + Lomb Multifocal Contact Lenses: Translating Insight Into Innovation

3-Zone Progressive™ Design provides visual clarity at near, intermediate and distance

By Jill Saxon, O.D.
Director of Professional Strategy, Bausch + Lomb

By Kristen Hovinga
Design Engineer, Bausch + Lomb

Today’s multifocal contact lenses use advanced optics to deliver a more natural field of vision, easing a sometimes-difficult transition for emerging and experienced presbyopes. However, most multifocal lenses still involve some degree of compromise. In a survey of more than 700 presbyopic lens-wearers, more than one-third of patients said it’s difficult to focus on far-away objects such as street signs while driving at night.1

In today’s digital age, excellence in near and intermediate vision is equally as important as seeing objects at a distance. Yet many presbyopes say they struggle seeing objects up-close at work.1 Successful fitting of multifocal contact lenses is often a time-consuming endeavor that leaves patients and practitioners alike dissatisfied.

Bausch + Lomb designed its multifocal contact lenses to overcome these challenges. The lenses use a 3-Zone Progressive™ Design featuring wide near and intermediate zones without compromising the distance power. The design has been optimized to provide consistent power across each zone (near, intermediate and distance) delivering accurate power at every power. The 3-Zone Progressive™ Design also minimizes noticeable shifts between zones, ensuring a smooth visual transition for patients. Eye care professionals can fit most presbyopic patients in Bausch + Lomb Multifocal lenses with just a low Add and a high Add. With other multifocal lenses, practitioners sometimes have to choose from multiple add powers to improve visual performance.

Bausch + Lomb developed the 3-Zone Progressive™ Design to optimize the best balance in vision at all distances, with a predictable fitting performance. The technology was designed using a novel, computer-generated modeling based on anatomical eye data gathered from 180 eyes. In addition to pupil size, this computerized optic modeling method measures additional parameters that influence lens design and performance (e.g., the corneal curvature and higher order aberrations) to accurately predict visual acuity scores for each individual eye. In contrast, most traditional multifocal research methods discount individual variability, limiting the number of design options and iterations that can be studied.2

To study the lens design, Bausch + Lomb evaluates the performance of multifocal contact lenses in real-world patient and clinical settings. In a field observation study of the Bausch + Lomb 3-Zone Progressive™ Design, 89.9% of patients agreed they had clear vision when they first put in the lenses, and 92% of eye care practitioners agreed that the fitting guide for 3-Zone Progressive™ Design lenses made it easy to fit the lenses with just two add powers.3 When practitioners followed the fitting guide, they successfully fitted 80% of patients in one visit and 96% of patients in two visits.3

With advanced optical modeling and two add powers for practitioners to choose from (a low and a high), Bausch + Lomb multifocal contact lenses provide today’s presbyopes with real-world visual clarity and fast transitions across distances. The lenses were designed with eye care professionals in mind, offering a consistent Add across the entire power range to make fitting easy and intuitive, thereby reducing overall chair time and a predictable fit.

*Based on a study of patients fitted with Bausch + Lomb PureVision®2 For Presbyopia multifocal contact lenses.


© 2016 Bausch & Lomb Incorporated. ®/™ are trademarks of Bausch & Lomb Incorporated and its affiliates. All other brand/product names are trademarks of their respective owners. PVP.0100.USA.15

SPONSORED BY BAUSCH + LOMB