Ortho-k Marketing Materials are Taking a New Shape

By Monica Leubner, Senior Manager, Marketing Communications, Bausch & Lomb Incorporated

We are proud to announce the availability of exciting marketing materials designed to help eye care professionals (ECPs) promote and grow their Ortho-k practices. These new materials are available first in North America to promote Bausch & Lomb Vision Shaping Treatment VST™ Program. Vision Shaping Treatment VST is the brand used in North America for the promotion of orthokeratology lenses falling under Bausch & Lomb’s FDA approval. Designs covered under the VST® umbrella currently include BE, Contex OK, DreamLens, Emerald, and NightMove.

The new materials fall into two distinct groupings. There are In Office materials to help educate prospective patients inside the practice. And, there are Patient Outreach materials to draw prospects into the practice. Following is a brief overview of the materials available in each group.

continued on page 2

GP Lenses and Children

An interview with Jeffrey J. Walline, OD, PhD, Assistant Professor at the Ohio State University College of Optometry

We recently had the opportunity to discuss with Dr. Jeff Walline, one of the USA’s leading experts in contact lens fitting in children, how he uses gas permeable lenses for young people.

What are the indications for GP use in children?

GP lenses are best for children who want to wear contact lenses full-time and who do not frequently engage in activities that involve dusty environments, such as baseball, gymnastics (talcum powder for the hands), or horseback riding. Children with corneal astigmatism are the best candidates, but others can be fitted with GP contact lenses as well. I typically fit a child with GP lenses if the parent wears GP lenses. Children with poor dexterity may also be fitted with GP lenses because they are easier to insert and remove than soft contact lenses, especially initially.

In your practice are there age restrictions regarding how young you might fit a child?

I typically don’t offer elective contact lenses to children younger than 7 or 8 years unless the parent inquires about the contact lenses. I have fitted children as young...
In Office – These tools are designed to help educate and excite patients already in your office. There is a **waiting room pamphlet** to highlight the benefits of VST and encourage patients to ask you or your staff for details. These pamphlets fit inside an attractive **counter card display** appropriately themed to call attention to the “**Sleep. Shape. See.**” message. For those who prefer to watch and listen, we offer a 3-minute **continuous loop DVD** that depicts the VST technology and benefits in an active and exciting way.

Patient Outreach – Many potential VST patients have never heard of orthokeratology or VST. And many of these prospects exist in your patient database. Good candidates would be former soft lens wearers who dropped out because of discomfort issues. Other prospects include teenagers and young adults active in sports, or existing contact lens patients suffering from marginal dry eyes. We offer an attention-grabbing **postcard** to send to your patients to introduce them to VST. We also offer a **recall card** that reminds patients of their upcoming appointment and the benefits of VST. We have also designed **newspaper or magazine ads** that can be customized for your practice. Customizable **PR releases** and “**letters to the editor**” are also available to help you to reach out further into the community. And, for those calling your practice, we offer different **telephone scripts** to quickly introduce your patients to VST when on hold.

These materials are only available in North America at this time and can be obtained from Authorized Boston Manufacturers. Some of you may have already received a toolkit containing the new materials.

International Offices:

- **Europe:** Mr. Marcel Kopito
 e:mail marcel_kopito@bausch.com
- **PRC/Taiwan/HK/Southeast Asia:**
 Mr. Jackson Leung
 e:mail jackson_leung@bausch.com
- **Japan and South Korea:**
 Mr. Tatsuo Harata
 e:mail tatsuju.harata@polymer.prserv.net
- **Latin America/Australia/New Zealand:**
 Mr. David Cardente
 e:mail david_cardente@bausch.com

North American Offices:

- **Jonathan Jacobson**
 Director of Global GP Business
 e:mail jonathan_jacobson@bausch.com
- **David Cardente**
 Int’l Customer Support Manager
 e:mail david_cardente@bausch.com
- **Karen M. Dussault**
 Executive Administrative Assistant
 e:mail karen_m_dussault@bausch.com
- **Christina Englund**
 Senior Graphic Designer
 e:mail christina_englund@bausch.com
- **Kurtis Brown**
 Lens Design Consultant
 e:mail kurits_brown@bausch.com
- **David Bland**
 Director of North American Sales
 e:mail david_bland@bausch.com
- **Christine Hewitt**
 Senior Product Manager
 e:mail christine.hewitt@bausch.com
- **Milt Kallas**
 Regional Manager
 e:mail milt_kallas@bausch.com
- **Dennis McClure**
 Regional Manager
 e:mail dennis_mcclure@bausch.com
- **Andrew White**
 Regional Manager
 e:mail andrew_white@bausch.com
- **John Hibbs**
 Regional Manager
 e:mail john_hibbs@bausch.com
- **Sonia Tuminelli**
 Customer Marketing Manager
 e:mail sonia_tuminelli@bausch.com
- **Amy J. Kelly**
 GP Lab Sales Representative
 e:mail amy.j.kelly@bausch.com
- **Jeffrey Knapp**
 Internal Sales Representative
 e:mail jeffrey_c_knapp@bausch.com

For newsletter information:

Bausch & Lomb Incorporated
Wilmington Facility
100 Research Drive
Wilmington, MA 01887 USA
Phone 1-978-658-6111
e:mail boston@bausch.com

The Boston Update Newsletter publishes articles and studies contributed by practitioners from around the world. The points of view presented should not necessarily be construed as those of Bausch & Lomb Incorporated. ®/™ denote trademarks of Bausch & Lomb Incorporated. © Bausch & Lomb Incorporated. All rights reserved. Other brand/product names are trademarks of their respective owners.
Correction of Presbyopia with GP Contact Lenses

By Desmond Fonn, MOptom, FAAO, School of Optometry, University of Waterloo, Canada

The Centre for Contact lens Research at the School of Optometry, Waterloo University in Canada recently completed the first handbook dedicated to the fitting of GP contact lenses to correct presbyopia. This easy-to-read manual provides key information for the practitioner on what to consider to successfully fit today’s presbyopes. The book is divided into the following sections:

- A description of today’s presbyope
- GP principles, designs and lens fitting
- Getting started with GPs for presbyopia
- Frequently Asked Questions (FAQs)
- Appendix with forms and tables.

This text is laid out with an emphasis on graphics and images that demonstrate fitting concepts while providing timely information for fitters – from novice to expert.

The guide is not focused on the scientific theory of the optics involved. Instead, it is meant as a practical tool for helping the fitter understand the potential for GP presbyopic correction. When combined with fitting information about specific laboratory designs, it is sure to increase fitter motivation and success in fitting patients with presbyopic GP lenses. The guide is available exclusively from Authorized Boston Manufacturers.

GP Lenses and Children, continued from page 1

as four years old with elective contact lenses, and that particular child learned to insert and remove her own contact lenses.

Do you approach the GP fitting process differently in children than adults?

For the majority of children, the fitting process is very similar to adults, but children are typically more anxious. I speak to them constantly, joke with them, and try not to let them know what is going on until just before I apply the contact lens. When I apply the contact lens, I make sure that I tell them what is happening and what to expect, but I do so very briefly and basically as I am doing it. That gives them less time to become anxious and improves the fitting process.

Do you have any special tips for teaching children to apply and remove GPs?

Children are great at insertion and removal. There isn’t anything special about teaching children how to care for their contact lenses. I typically work with them for a maximum of 40 minutes; if they cannot apply the contact lenses by that time, I have them go home and practice (without a lens) then come back for further insertion and removal training. They cannot take their contact lenses home until they show me that they are able to insert and remove the contact lens on their own.

Is it difficult for young people to adapt to GP lenses? What is the typical adaptation period for a child fit in GP lenses? How does it compare with that of an adult?

In the short term, approximately 80% of myopic children can adapt to wearing gas permeable contact lenses. This number is basically identical to the proportion of adults who can adapt to GP contact lenses. Over a three-year period, about 30% of the children who initially adapted to GP contact lenses will stop wearing them. That means that overall, approximately seven out of every ten myopic children will be able to continue wearing gas permeable contact lenses for a long period of time.

Are children more apt to be compliant with one-bottle or two-bottle lens care systems?

Using a simple care system should improve compliance, but there is no evidence to support that assumption. We typically use a simple system initially and only change to a more complicated system if the contact lenses acquire too many deposits. Especially in the beginning, providing a simple care system will enhance the ability to adapt to contact lens wear and care.

Most children are quite active. In your experience do children lose lenses more often than adults?

Children typically lose one or two contact lenses within the first month. After that initial period, they rarely lose a contact lens. The primary difference is that a few kids consistently lose or break their contact lenses. It is difficult to predict what children will lose more contact lenses than others, but typically children who are less mature or less responsible will be those who are most likely to continue to consistently lose their contact lenses.
Do you recommend GP lenses for sports? Or should active kids avoid GP lenses?

Active children are not a concern for GP contact lenses unless they are active in an atmosphere that includes dust, such as soft ball games or talcum powder for gymnasts.

Do you recommend a spare pair?

I recommend a spare pair while the child is adapting to the contact lenses because children lose their contact lenses more often. If they are without contact lenses during the adaptation period, they will have to begin adapting all over. After a while, the kids lose their contact lenses less often, so spare pairs are not as necessary. When contact lenses are replaced due to a change in prescription, the children can use the old pair as a temporary spare pair while the new ones are ordered.

How frequently do you recommend GP lenses be replaced in children?

GP contact lenses are rarely replaced due to deposits in children because their prescription changes more often than adults. I tell parents that their children will likely need new contact lenses within one year due to changing the power of the contact lens.

How do you ensure that young people comply properly with the wear and care?

Have children demonstrate to you how they care for their contact lenses at each visit (approximately every six months). If they make a mistake, you can correct the problem and improve compliance.

How much parental involvement is there?

Many parents say that they have no idea how long it takes their children to insert or remove their contact lenses because they are not involved in that part of the contact lens care at all. Parents should be told about the importance of routine eye care, but the idea is that children will care for their elective contact lenses on their own. Parents should be there to remind their children of proper contact lens care when the child’s routine is changed, but otherwise they should rarely have to take part in the contact lens care.

Can you tell us a little about your myopia control study with GPs?

Alignment fitted GP contact lenses do not slow the growth of the eyes. They flatten the cornea slightly, which makes children appear less nearsighted, but the effect is only temporary. GP contact lenses should not be fitted solely to slow myopia progression.

Are you an advocate of Ortho-k for kids?

Corneal reshaping contact lenses are a great option for children. They can swim or participate in activities without having to wear contact lenses.

What 3 tips can you provide our readers regarding the fitting and follow-up care of GP lenses and children?

Place a drop of topical anesthetic in the contact lens when fitting and dispensing the contact lenses. This will allow the child to slowly adapt to the feeling as corneal sensation returns and allow the eye care practitioner to get a better examination of the fit of the contact lenses. When dispensing GP contact lenses, an over-refraction will often reveal +0.50 D to +1.00 D. However, the child has not been over-minus. This is due to excessive tears. Check the over-refraction at the one-week visit; very rarely will the prescription be incorrect. Tell children to stop wearing their contact lenses if their eyes hurt, get red, or have poor vision. If the symptoms don’t subside within a few hours of removing the contact lenses, call the doctor right away.

Biography

Jeffrey J. Walline, OD, PhD, is an Assistant Professor at The Ohio State University College of Optometry. He received his Doctor of Optometry degree from the University of California, Berkeley School of Optometry in 1996, and he received a Master’s degree in Physiological Optics from The Ohio State University College of Optometry in 1998. He completed a PhD degree in Vision Science at The Ohio State University College of Optometry in 2002.

Dr. Walline is the Principal Investigator of the Adolescent and Child Health Initiative to Encourage Vision Empowerment (ACHIEVE) Study, a randomized clinical trial to investigate the effects of contact lens wear on nearsighted children’s self-perception. He is also conducting the Corneal Reshaping and Yearly Observation of Nearsightedness (CRAYON) Study to examine the effects of corneal reshaping contact lenses on myopia progression in children.

He teaches Vision of Children to third year optometry students and he is a clinical instructor in the Binocular Vision and Pediatrics Service at the College of Optometry.
The incidence of keratoconus worldwide is about 1 in 2000. It is primarily diagnosed in the teens or early 20s. There are many theories as to the causes of keratoconus but the exact causes remain unknown.

Twenty years ago, in 1986, the National Keratoconus Foundation (NKCF) was founded by Morry and Rita Pynoos with a grant from the Jane and Norman Neely family. In response to a lack of available information on keratoconus, the NKCF was created to increase the awareness of keratoconus, provide information to patients and their families, and to support keratoconus research. So began the National Keratoconus Foundation.

Although keratoconus is manageable, it can create many challenges for those patients diagnosed with the condition. It may have a profound affect on self esteem and can even affect career choices. Everyday tasks like reading, viewing the computer, and driving (especially at night) are no longer routine for these patients. The emotional impact of dealing with a keratoconus diagnosis can be as difficult as the physical challenges. Anxiety, fear of going blind, depression, and fear of job loss are just a few of the emotions many of these patients experience. Patients diagnosed with keratoconus not only need information but at times a means to obtain emotional support or seek out a specialist for their condition. The NKCF is an organization that assists patients in all these areas.

The NKCF uses many services to provide information and support to patients and their families. One of the most recognized and useful tools is a booklet titled *What is Keratoconus? A Reference Guide For Patients & Their Families*. This booklet is in its 5th edition with over 100,000 copies distributed worldwide. Other support services that the NKCF provides are KC-Link, an e-mail based support group with over 2000 members worldwide, referrals to KC specialists, an NKCF newsletter, and the corneal transplant surgery guide. The NKCF also provides a tissues procurement program, awards research grants, and maintains a database of keratoconus information.

In addition to celebrating 20 years of operation, the NKCF is also marking the 20th year of support by the Boston Products Group of Bausch & Lomb. For more information visit the NKCF web site at www.nkcf.org or contact the NKCF at 800-521-2524.

Scenes from the First Global Keratoconus Congress (GKC)

Las Vegas, NV, January 2007

Above, Dr. Paul Rose, of Rose K Lenses and Alan Saks, both of New Zealand.

Left, the Bausch & Lomb Boston booth displayed flags of all the nations represented by Congress attendees.

Dr. Sami El Hage, Houston, Alex Cannella, and Nick Stoyan of Contex.

Catherine Warren of NKCF, Dr. Perry Rosenthal, Boston Foundation for Sight, and Chandrashekkar Chawan, BFS Director of Clinical Operations, India, at GKC.
There is a growing interest in the plasma treatment of GP lenses. However, many eye care practitioners are still unsure as to what the process is and how it can benefit their patients.

Simply put, plasma treating GP lenses is a very effective cleaning method to remove any residual film that may remain on the lens surface after the manufacturing process. Although Boston® GP materials are inherently wettable and do not require plasma treatment for optimal efficacy, an interesting and potentially favorable outcome of the treatment process is the dramatic reduction in wetting angle measurements (Figure 1). This wetting angle reduction can potentially increase initial comfort for GP wearers.

To the GP manufacturer, plasma treatment is a relatively simple cleaning step that comes at the end of the lens making process. The lenses are first thoroughly cleaned with Boston Laboratory Lens Cleaner. They are then placed in holders and put into the plasma treatment chamber. A computer controlled process evacuates the air from the chamber, replaces it with pure oxygen, and bombards the lenses with an intense energy signal. After treatment (which takes approximately 11 minutes from start to finish), the lenses are packaged for wet shipment with Boston SIMPLUS® solution and sent to the practice.

When we refer to plasma treating for gas permeable lenses, we are referring to a process that is more accurately called cold oxygen plasma treatment. Cold oxygen plasma treatment uses Radio Frequency (RF) energy to excite the oxygen gas in the plasma chamber at room temperature. The excited oxygen particles will break down non-visible oil films and microscopic residue left on the lens surface after manufacturing. This film and residue is then evacuated from the plasma chamber with a vacuum pump, leaving behind a clean, uniform contact lens surface.

Typical applications for plasma surface engineering in other industries include the modification of catheter components to enhance adhesion for bonding or coating, treatment of diagnostic devices for chemical functionalization, and preparation of implant components to receive biocompatible coatings.

There is still much to be learned about the potential of plasma treatment to provide improved features to GP lenses. Early adapters of the technology are generally favorably pleased and believe that plasma treatment may soon become as common to GP lenses as AR coatings are to spectacle lenses.
Spotlight on Kurtis Brown

For this issue’s Spotlight, we spoke with Kurtis Brown, lens design and manufacturing consultant. Kurtis has been working with us since 2000.

How would you describe your work with the Boston Products group? What are your responsibilities?

My primary responsibility here is to support Focal Points, a contact lens design, fitting, and manufacturing software system. In this capacity, I perform installations, prepare instructional materials, and provide support for customers that use Focal Points. I also help them import existing lens designs into the system and develop new designs using Focal Points Designer.

I also work in support of our Technical Services team, evaluating new processes and materials, developing certification programs, and assisting laboratories in implementing new technologies.

What is your background – Where are you from, and what were some of your experiences before coming to B&L?

I grew up in Andover, Massachusetts, a small town about twenty miles outside of Boston. For the last twenty-five years I’ve lived in Boston.

Before coming to Bausch & Lomb, I worked for the Boston Foundation for Sight (BFS), a non-profit organization founded by Dr. Perry Rosenthal that specializes in fitting patients who have diseased or otherwise compromised corneas. While at BFS, I managed the lens lab and developed software for designing and manufacturing the specialized contact lenses fit there. I also had the opportunity to work directly with patients and fitters in the clinic, aiding in the development of customized lenses. I’m quite thankful for that experience; seeing the remarkable, sight-restoring benefits of GP lenses to these patients shaped my understanding of the potential for our industry to improve patients’ lives.

What do you feel to be the most rewarding aspect of your work with B&L?

That would certainly be the opportunities that I have had to visit with our customers all over the United States and the world. I enjoy traveling and have always appreciated the welcome that I have been given wherever I visit. Working with people of different backgrounds and cultures is a very rewarding experience; there’s always something new to be learned about the GP industry or about life in general.

I also like the enthusiasm that is brought to the industry by the people that I work with. Most people in the GP industry have been involved a long time and are very committed to GP lenses; the lab personnel, lens designers, and fitters that I have worked with often treat their work as more than just a job, they tend to treat it with a good amount of passion.

Where do you think the GP industry is headed? What, do you think, are the most interesting changes that we should anticipate in the future?

Like most industries, the GP industry has undergone dramatic changes in the last decade due to the introduction of computers and computerized manufacturing technology. Although computerized lathes have been available to manufacturers for decades, I think that the true potential of this technology has yet to be unlocked. As manufacturers become more familiar with these highly flexible design and manufacturing capabilities there will be unprecedented design and fitting options for the practitioners that we serve.

Specialty lenses, such as toric, keratoconus, large diameter, and presbyopic lenses, are increasingly important tools in the modern fitter’s toolbox. Significant improvements in the fitting and optical properties of these lenses will be possible through the exploitation of an array of computerized design and manufacturing tools. Through improvements in fitting technology, especially the use of corneal topographers in conjunction with topography-based fitting software, many of the traditional barriers to fitting these lenses will come down. This computer-aided fitting, or auto-fitting, should provide the patient with a truly customized lens that precisely meets their needs. It should also make fitting GP lenses much easier and more intuitive for both novice and experienced fitters.

When not at work, how do you spend your time? What are your hobbies or interests?

Living in Boston, there are many cultural and historic sites to visit. I enjoy going to museums and concerts or hunting around for interesting new restaurants. I am also an avid photographer, so I spend a fair amount of time behind the camera. Whenever I travel, I try to take some extra time and do some photography of whatever city I’m in. No matter where I go, I always come back with something interesting.

Jean Blanchard, center, is presented with a plaque by Andrew White, celebrating the 20th anniversary of Laboratoires Blanchard, Canada. Left, Bob Martin, Blanchard Contact Lenses, NH.

Dr. Frank Widmer of Hecht, Germany, with Marcel Kopito and Ken Harty in Wilmington, January, 2007.

At a symposium at Catholic University of Korea, Dr. Choun-Ki Joo, Catholic University, and Dr. Masao Matsubara, Tokyo Women’s Medical University, with Tatsuo Harata, February 2007.

Above, taking audience questions: Patrick Caroline, Oregon; John Mountford, Australia; Craig Norman; Dr. Helen Swarbrick, University of New South Wales, Australia; and Dr. Pauline Cho, Hong Kong Polytechnic University, at the First International Symposium on Orthokeratology (ISOK), Hong Kong, May 2007.

European practitioners attending a Masters Course at New England School of Optometry visited our Wilmington facility in June 2007.

Above, Bruce Scott and Rhea Mayben of Essilor Laboratories, Brian Hodgins and Richard Dorer of Blanchard Contact Lenses, Craig Norman, Randy Kojima of Precision Technology, and Lee Buffalo of Blanchard enjoy dinner during SECO, Atlanta, Georgia.

Craig Norman conducts a Boston seminar in Hefei, China in May. Seminars were also held in Hangzhou, Shanghai, Wenzhou, Guangzhou, and Hong Kong.

At a symposium at Catholic University of Korea, Dr. Choun-Ki Joo, Catholic University, and Dr. Masao Matsubara, Tokyo Women’s Medical University, with Tatsuo Harata, February 2007.